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1. INTRODUCTION 
 
1.1 Context 
Blanket peat covers approximately 300 km2 of the southern Pennines, and three 
quarters has been badly affected by erosion (Bragg and Tallis, 2001).  Degraded 
peatland landscapes are a mosaic of exposed peat, mineral soil and vegetation patches.  
The size, shape, arrangement and topographic association of the peat and mineral soil 
patches produce patterns which express the erosion status of the catchment.   

The most degraded catchments of the Dark Peak are characterised by large areas of 
exposed peat and mineral soil.  Vegetation cover has been lost and gully erosion has 
proceeded down through the peat to underlying mineral soil, followed by lateral erosion 
to produce mineral-floored gullies and, eventually, large expanses of mineral soil with 
isolated mounds of bare peat, as at Bleaklow Head.  Export of particulate organic carbon 
(POC) in streamflow is greater from degraded catchments, with consequent siltation in 
reservoirs (Evans and Warburton, 2005).  High levels of dissolved organic carbon (DOC) 
are also present in the streams, darkening water colour in reservoirs (Freeman et al., 
2001; Labadz et al., 1991).  Export of POC and DOC in streamflow and aerobic 
decomposition from exposed peat flats represent losses in the peatland carbon cycle 
and its contribution to the overall carbon budget (Stewart and Wheatly, 1990; Gorham, 
1991; Charman, 2002; Worrall et al., 2003; Holden, 2005).   

For POC, it is not simply the area of exposed peat and mineral soil which is important; 
so too is the arrangement of pat patches in the landscape.  The underlying premise is 
that pattern is a proxy for process (Belyea and Lancaster 2002).  Specifically, it can be 
suggested that the connectivity of peat patches to channels is an indicator of erosion 
risk, expressing slope-channel coupling in bare peat areas.  It is a major control on 
sediment export because vegetation patches connected to channels act as sediment 
traps (Evans et al., in press).  Thus, if we can encode patch-channel connectivity1 and 
other key elements of erosion pattern, we could use these pattern metrics to classify 
peat patches and map the potential for loss of POC in peatland catchments (Liddaman, 
2004; Liddaman et al., 2004).  Patches where restoration works would be likely to 
produce the greatest reduction in POC could be identified, that is, where connectivity to 
channels is highest and where metrics such as area and slope suggest that risk is 
highest. 

The project evaluates alternative techniques and existing aerial photography datasets for 
mapping peat erosion for two contrasting sample catchments, and develops a method 
for encoding the erosion pattern.  By extending the method over the Peak District 
National Park (PDNP), priority areas for erosion control measures may be identified.   

 

1.2 Aims 
The project aim was to develop an objective, repeatable method of describing the 
erosion pattern, which could be used to produce a baseline map of peat erosion pattern 
and erosion status.  It had to be based on easily accessible remotely sensed data 
sources.  The aims were: 

                                                 
1 As distinct from patch-to-patch connectivity used in landscape ecology and habitat analysis 
(Clergeau and Burel, 1997). 
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• To use existing remotely sensed datasets to provide a baseline map of peat erosion 
for two contrasting catchments 

• To develop a technique for extracting a set of erosion pattern metrics from the 
baseline map, so as to provide an objective, repeatable description of peat erosion 
pattern  

A longer term aim, beyond the scope of the current project, is to use the erosion pattern 
metrics to classify catchments into erosion status classes and test the extent to which 
they relate to relative loss of POC.   

 

1.3 Research questions 
1. What is the best existing spatial data source and method to produce a baseline 

(pre-restoration) map of exposed peat and mineral soil? 

2. What is the most appropriate method to extract the channel network from a 
LiDAR digital elevation model (DEM) in eroding peatland? 

3. How can we use the erosion map, channel network and digital terrain model 
(DTM) to derive erosion pattern metrics (i.e. variables which objectively describe 
erosion pattern within and between catchments) and to produce a map of 
potential erosion risk? 

4. To what extent can these techniques be used to monitor the success of 
restoration measures over time? 

 

1.4 Objectives 
1. To evaluate the quality of available aerial photographs and recommend which 

should be used for mapping and encoding erosion pattern. 

2. To produce a baseline three class map of peat erosion (exposed peat, mineral 
soil, vegetation) 

3. To recommend the most appropriate classification methods. 

4. To use the peat erosion map to extract morphological metrics expressing the 
size, and shape of peat and mineral soil patches, and, together with the DTM, to 
extract topographic metrics expressing their erosion potential.   

5. To extract a realistic channel network from the LiDAR DTM and, together with 
the peat erosion map, to extract connectivity metrics describing the degree of 
slope-channel coupling in areas of exposed peat.   

6. To use the erosion pattern metrics to illustrate and analyse spatial variation in 
erosion pattern metrics within and between sample catchments. 

7. To derive preliminary maps of potential erosion risk based on key land cover, 
connectivity, morphological and topographic metrics. 

8. To make recommendations for further work. 
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1.5 Study sites 
Two catchments were selected in the Dark Peak area of the southern Pennines (Figure 
1.1), near to the Snake Pass (A57) between Manchester and Sheffield, with differing 
proportions and patterns of exposed peat and mineral soil.  They represent the range of 
degradation from the highly degraded at Torside (TS) to less degraded at Upper North 
Grain (UNG).  Torside Clough is the larger of the two catchments (3.31 sq km) and has 
both Bower Type 1 and Type 2 erosion patterns present (Bower, 1960, 1961).  Upper 
North Grain (UNG) (0.38 sq km) is characterised by Bower Type 1 erosion with deep 
incised gullies.   

 
Figure 1.1: Location of Dark Peak catchments: green box, Torside (TS), red box, Upper 
North Grain (UNG) 

 

1.6 Structure of report 
Figure 1.2 shows the key stages in the project, which are mirrored in the report structure. 

Section 2 evaluates the radiometric and geometric quality of spatial data sets available 
and makes preliminary recommendations about appropriate aerial photographs and 
DEMs for pattern work (objective 1).  Brief recommendations will also made about types 
of remotely sensed data and classification methods which could be used to monitor 
revegetation resulting from moorland restoration. 
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Section 3 evaluates multispectral classification methods to produce the three class map 
of peat erosion (objectives 2 and 3) and selects the data source to be used to encode 
pattern (objective 1).  

Section 4 explains the metrics used to pattern encode, including how pixels on the three 
class map are sieved and clumped to produce a patch map.  It describes how 
morphological and topographic metrics were extracted from the patch map and digital 
elevation model (DEM) (objective 4).  It describes a new method to extract the channel 
network is how patch connectivity is encoded (objective 5). 

Section 5 presents a statistical analysis of how pattern metrics vary between and within 
catchments (objective 6) and develops preliminary erosion risk maps (objective 7).   

Section 6 summaries recommendations, reflects on the degree to which aims were met 
and makes recommendations for further work (objective 8).  
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Figure 1.2: Flowchart of project work scheme and relationship to report structure 
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2. SPATIAL DATA SETS 
 
2.1 LiDAR 
A digital elevation model (DEM) was made available by the National Trust and MFF.  A 
DEM is an image of the height of the land.  It was needed to extract topographic metrics 
such as slope for the peat, mineral soil and vegetation patches, and to generate a 
channel network (section 4.1.2).  

The DEM provided had been extracted from LiDAR data secured by the Environment 
Agency on two dates; 5 December 2002 for UNG (The National Trust High Peak Estate 
dataset) and for May 2004 for Torside (MFF extended ‘Holden’ data set).  The 10 m pixel 
size of the Infoterra digital terrain model was too coarse to use with aerial photographs 
of 0.25 and 0.5m pixel size.  A digital elevation model (DEM) is normally available as a 
by-product of the aerial photography orthorectification process (as for two of the three 
aerial photo datasets).  These were produced for two of the aerial photograph datasets, 
UK Perspectives true colour, 1997-2001 (UKP-TC), and the UK Perspectives colour 
infrared, 2005 (UKP-CIR) however, they were not supplied for the project (Table 2.1).  
Given the extra data volume and work already undertaken on extracting a channel 
network from the LiDAR DEM, it was felt that the project should continue with the LiDAR.   

LiDAR is an airborne laser scanner which measures the elevation of the land surface, for 
this dataset, every 2 m laterally and with a stated vertical accuracy of 0.10 m (Haycock, 
2004).  The forward motion of the aircraft builds up the lines of the image.  The sensor 
measures the time taken for the laser pulses to return to the sensor, which is 
proportional to the distance between the sensor and the ground, that is, to the height of 
the land.  The time taken for the first pulse to return gives a digital surface model (DSM), 
which can include buildings or tree tops.  In an open moorland environment, there are 
few such obstacles so the DSM approximates to the ground surface itself (known strictly 
as a digital terrain model or DTM).  The DEM used here was actually a DTM created by 
the Environment Agency from the DSM and corrected to remove small depressions.  

2.2 Aerial photographs 
Three sets of aerial photographs (APs) were provided by MFF (Figure 2.1, Table 2.1): (i) 
Get Mapping (GM) 0.25m, (ii) UK Perspective 0.25m true colour (UKP-TC) scanned 
aerial photographs and (iii) UK Perspective colour (near) infrared (UKP-CIR) aerial 
photographs at a resolution of 0.50m.   

The GM (Figure 2.1(a)) was flown between April and October 1999 imagery, according 
to the suppliers, but a date of 2002 in given in the MFF data booklet (MFF 2005).  They 
have been rectified to Ordnance Survey (OS) but have not been orthorectified, so 
geometric distortions due to topography remain, as do errors due to the quality of the OS 
data for moorland areas.  The UKP-TC aerial photographs (Figure 2.1(b)) were flown 
between 1999 and 2003 and have been fully orthorectified with a stated map accuracy of 
± 2 m.  The UKP-CIR imagery (Figure 21(c)) was flown in 2005 and is fully orthorectified 
with a stated map accuracy of ± 2 m.   

It is not clear if the GM and UKP-TC 1997-2001 datasets were acquired as analogue 
photographs with a photographic camera and the negatives scanned, or if they were 
acquired by a digital camera (often regarded erroneously as ‘scanned’ data).  This 
indicates the need for good metadata from the suppliers and its subsequent 
maintenance.  
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Alternative image sources available for this work include satellite imagery and airborne 
scanners such as CASI and SWIR data (Palylyk et al., 1984; McMorrow and Hume, 
1986; Weaver, 1987; Ward and Weaver, 1989; Poulin et al., 2002; Cutler et al, 2002; 
Mehner et al., 2004).  However, aerial photography was selected as it is a familiar and 
easily available image source for land mangers.  The rationale was to develop 
techniques that utilise the data sources currently available to the people that will put 
them into practice.   

Table 2.1: Metadata available for the aerial photograph datasets 

Property Get Mapping UK Perspective-TC UKP-CIR 
Type 
 
 
Spectral range 
 
Pixel Size 
 
Geometry 
 
 
 
Date 
 
 
 
 
DEM produced 

Scanned true 
colour 
 
Visible 
 
0.25m 
 
Not orthorectified 
but rectified using 
OS data 
 
Apr-Oct 1999 
(supplier’s data, 
2002 in MFF data 
booklet) 
 
No 

Scanned true colour 
 
 
Visible 
 
0.25m 
 
Fully orthorectified 
imagery with map 
accuracy ± 2 m 
 
1999-2003 
 
 
 
 
Yes 

Digital and NIR (true 
colour also available) 
 
Visible and NIR 
 
0.50m 
 
Fully orthorectified 
imagery with map 
accuracy ± 2 m 
 
Sept 2005 
 
 
 
 
Yes 

 

 
Figure 2.1(a):  Extract for Torside from Get Mapping aerial photos 
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Figure 2.1(b):  Extract for Torside from the UKP-TC aerial photos (1997-2001) 

 

 
Figure 2.1(c):  Extract for Torside UKP-CIR aerial photos 
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2.3 Assessment of aerial photo image quality 
2.3.1 Rationale 
A problem associated with aerial photography is that it is usually provided by external 
agencies and, as a result, it can be difficult to obtain full metadata, especially details of 
pre-processing procedures which may have been applied, such as contrast stretching, 
compression and geometric correction.  Therefore, an assessment of the radiometric 
and geometric quality of the three datasets was carried out to evaluate the usefulness of 
the imagery for mapping and encoding the spatial pattern of peat erosion.  Radiometric 
quality significantly affects the thematic accuracy of the patch map, that is, whether the 
land cover class allocated is correct.  Geometric accuracy is critical to assess 
connectivity of peat patches to channels, since the channels derived from the LIDAR 
DEM must fit accurately over the patch map.   

2.3.2 Method 
OS mapping of sufficient accuracy is not updated frequently enough to use as the 
reference source; for instance, the Pennine Way has been relocated in places since OS 
mapping.  Therefore, the LiDAR data was regarded as the base for assessing relative 
geometric accuracy of the aerial photography.  Geometrically, the correction of the 
LiDAR is good as it uses two dGPS, one on board the aircraft and a second located at 
an OS base station whose position is known to millimetric accuracy.  In this way, the 
position of lines can be fixed regardless of aircraft movement during scanning.   

Thirty-five control points were identified on both the aerial photography and the LiDAR 
datasets, largely at steam confluences.  This was the maximum which could be detected 
on all four datasets.  Some could be identified on all the photographs but not on the 
DEM because their topography was not sufficiently pronounced at the 2m spatial 
resolution of the LiDAR.  The root mean square error (RMSE) was calculated to express 
the difference in position (Table 2.2).  

2.3.3 Get Mapping aerial photos 
The GM imagery has good radiometric properties, although it has been heavily contrast 
stretched prior to Manchester University obtaining the dataset.  This has enhanced 
spectral contrasts between the three land cover classes (exposed peat, mineral soil and 
vegetation), making it qualitatively and, to some extent, quantitatively possible to extract 
land cover information.  The contrast stretch has saturated mineral soil to white, as can 
be seen in Figure 3.1.  While this makes it easy to pick out visually (Figure 2.1(a)), it 
creates statistical problems for automated classification (section 3.1.3.).  

The major problem with the GM imagery is that it has poor geometric accuracy because 
it has not been orthorectified.  The RMSE relative to the LiDAR DEM was 17.49 m, 
which greatly reduces the usefulness of this dataset in trying to identify the 
connectedness of the peat patches to the channel network.  As the channel network is 
extracted from the LiDAR data, it is important that it overlays with low positional error on 
the patch map (derived by classifying the APs as in section 3.1, and sieving and 
clumping as in section 4.1.1).  If positional error is poor, then the connectivity of patches 
to the channel could be under or over-estimated. 

2.3.4 UKP-TC aerial photos 
The UKP-TC imagery had the opposite problems to the GM imagery.  Geometric 
accuracy was significantly higher with a RMSE of 3.52 m, giving a better fit to the LiDAR 
data.  However, radiometric properties were very poor, with poor contrast and artefacts, 

 9
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including speckles and blocking (Figure 2.3).  Such artefacts are usually created by file 
compression to reduce storage space.  They produce problems if image processing, 
such as multispectral classification is to be carried out.  It is therefore important that 
images are purchased in an uncompressed format, despite the extra disc space 
required.  A 5x5 pixel median filter was applied to the UKP-TC images to reduce 
speckle.  The filter replaces the central value in a moving window with the median 
brightness value for the pixels in the window (Mather, 2004). 

 
GM UKP NIR 

Band 1 = Red Band 1 = Red Band 1 = NIR 

   
Band 2 = Green Band 2 = Green Band 2 = Green 

  
Band 3 = Blue Band 3 = Blue Band 3 = Blue 

  
Figure 2.2: Histograms showing image brightness in three bands for the Torside image 
extract for each of the three aerial photo data sets. 

The poor contrast of the UKP-TC photographs was confirmed by the near duplication of 
reflectance in two of the three image bands, as illustrated by the close similarity of their 
brightness histograms (Figure. 2.2), making the image look ‘washed out’.  This could be 
due to accidental duplication of a band by the distributors, or, more likely, to poor 
spectral contrasts between vegetation, peat and mineral soil at the season(s) the 
imagery was acquired.  Ironically, spectral differences have probably been further 
reduced by the strong contrast stretch applied by the suppliers (as indicated by the small 
peaks at ether end of the histograms in Figure 2.2 and the saturated reflectance of 
mineral soil (Figure 3.1).  The strong stretch may have been applied because of the 
great range of brightness found when many photographs are mosiacked and, especially, 
if they had been captured over a period of four years and at different seasons.   
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Figure 2.3: Block artefacts and speckling produced by compression in UKP true colour 
aerial photographs.  The poor colour quality is also illustrated. 

 

2.3.5 UKP-CIR aerial photos 
The UKP-CIR imagery has the best radiometric and geometric properties of all three 
datasets.  The NIR band separates the spectral properties of the peat and vegetation 
classes better, so that the UKP-CIR imagery would produce a much better map of the 
exposed peat, mineral soil and vegetation.  However, the relatively low sun angle of 
these September images, seen in Figure 2.2(c), means that deeply incised areas like 
Torside Clough are in shadow and caused shadow to be misclassified as peat (Figure 
3.5(c)).  Elsewhere shadow was an advantage; it reinforced the low reflectance of peat 
exposed along the shaded side of gullies, especially those orientated SW-NE and 
helped them to be classified as peat (Figure 3.9(c)).  However, the reflectance of peat on 
sunlit gully walls was similar to vegetation or mineral soil and caused misclassification.  
These issues which will be discussed in section 3. 

The data were available in two formats.  The ‘ecw’ format contained many compression 
artefacts which meant that it was not suitable for classification, so the ‘tif’ format was 
used instead. 

The geometric properties relative to the LiDAR DEM were also excellent, with a RMSE 
of only 0.79m, producing a good fit with the LiDAR.  The combination of good 
radiometric and geometric properties suggested that the UKP-CIR would produce the 
best peat, mineral soil vegetation map for the next stage of the analysis.  This was 
confirmed by the assessment of thematic accuracy (section 3.4) and the classified 
mages UKP-CIR photos were used.   
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2.3 Discussion and recommendations 
The quality of the imagery varies significantly for the three data sets (Table 2.2).  Good 
radiometric and geometric quality is required for analysis of erosion pattern, and for any 
future monitoring of moorland restoration work.  Overall the UKP-CIR photographs were 
found to offer the best compromise and therefore, were used to encode and statistically 
analyse erosion pattern (sections 4 and 5).  Factors affecting patch definition are 
summarised in Figure 2.4. 

Table 2.2:  Summary of aerial photograph image quality 

Properties Get Mapping UKP-TC UKP-CIR 

GEOMETRIC: 
 
 
 
RMSE relative 
to LiDAR DEM 
 
 
RADIOMETRIC: 
 
 
 
 
 
 
 
Artefacts 

Very poor - Some 
landscape features 
have been distorted 
 
Overall 17.49m 
X 8.55 
Y 11.27 
 
Poor - heavily 
Stretched so does 
not represent the true 
colour of the 
landscape, but 
separates classes 
quite well. 
 
None 

Good 
 
 
 
Overall 3.52m 
X 2.33 
Y 1.99 
 
Very poor – possible 
band replication in 
some areas.   
Stretched.  Shadow.  
problems 
 
 
 
Compression 
artefacts.  Some 
white lines  

Very Good 
 
 
 
Overall 0.79m 
X 0.96 
Y 0.67 
 
Good – NIR band 
identifies the 
vegetation very well. 
Shadow.  problems  
 
 
 
 
None for tif format, 
but compression 
artefacts on ECW 

 

Five recommendations can be made for any new photography commissioned: 

(i) Radiometric pre-processing should be kept to a minimum, especially data should 
be supplied uncompressed and not contrast stretched.   

If a smaller file size is also needed, data should be requested in two formats (as 
with the compressed ‘tif’ and compressed ‘ecw’ for UKP-CIR).  Alternatively, data 
compression, for instance to ‘jpg,’ could be done in-house after delivery.   

It is recommended that an archive of sub-sampled contrast stretched thumbnail 
images is made to make browsing easier for users, ideally referenced to a digital 
map of the flight plan.  It is becoming easier to deliver maps and images over the 
internet).  

Where printouts for visual interpretation are needed, contrast stretching of extracts 
could be done in-house using freeware such as TAS.   

(ii) CIR photography is better than true colour 

Including NIR part of the spectrum improves spectral separability, especially if 
types of vegetation or the status of revegetating peat is to be assessed.  This is 
because plants reflect NIR light according to their leaf area, leaf structure and 
canopy geometry, so differences due to species composition or vigour of growth 
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are more detectable in this part of the spectrum (Lillesand et al., 2003).  Scanner 
images at longer wavelengths and hyperspectral images should also be explored 
(section 3.5). 

(iii) Obtain images in summer and as close as possible to solar noon.  

Timing is critical due to sun angle and plant phenology.  Photography should be 
acquired when the high sun is high in the sky to minimise shadow, that is, summer 
and/or close to solar noon (12:00 GMT, 13:00 BST).   

Spectral contrasts between moorland plants are most obvious in spring or summer, 
depending on specific habitat (McMorrow and Hume, 1986; Morton 1986).  This is 
because seasonal changes in phenology, such as greening up or flowering, 
produce marked change in the reflectance of red and near infrared (NIR) light at 
this time, making it easier to distinguish between habitats or stages of 
regeneration.   

(iv)  Good orthorectification is required 

Removal of as much geometric distortion as possible is essential for pattern 
analysis because patch maps must fit over the LiDAR DEM for connectivity 
analysis.  It is also essential for locating plots established to monitor moorland 
restoration.  Orthorectification (seeks to remove the topographic distortions to 
make a planimetrically accurate photomap.  Rectification does not correct for 
topography. 

It is rarely possible to remove all distortion, so it is advisable to state an acceptable 
RMSE (map accuracy) at the time of commissioning and to confirm that the 
supplier calculates RMSE from an independent set of test points and not from the 
control points used to carry out the orthorectification.   

The source of control points and DEM to be used should also be known, as both 
can reduce final map accuracy.  Control points fixed with a millimetric dGPS are 
better than those extracted from OS mapping.  A DEM derived from the aerial 
photos themselves is preferable, followed by one from LiDAR at as fine a 
resolution as possible (a 2m LiDAR DEM is better than 10m).   

Compromise may be needed, as reducing error incurs cost.  This might be offset 
by requesting the DEM which is normally a by-product of ortho-rectification (unless 
an existing DEM is used to perform the correction).  For pattern work based on the 
2m LiDAR DEM, the stated map accuracy of the UKP-CIR photos, 2m, is 
appropriate for the DEM pixel size (the stated map accuracy of DEM not known but 
usually not better than ± one pixel).   

The UKP-CIR photos with 0.5 m pixels and RMSE of 2 m are also appropriate for 
monitoring restoration at permanent 4x4 m plots.  If RMSE or pixel size were 
larger, then larger plots would be needed to ensure that the pixels extracted relate 
to the ground data. 

(v)  Not finer than 0.5m spatial resolution unless for small areas (<1 km2). 

Data volume and cost is increased if more detailed images are used.  Doubling the 
spatial resolution (halving pixel size) quadruples the data volume.  This has 
implications for storing and processing files (section 4.2) unless small extracts are 
used.  A finer resolution would not be practicable if pattern analysis were up-scaled 
to the whole of the Section 3 Moorlands in the National Park.  Resolution issues 
are discussed further in the conclusion (section 6.1). 
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(vi) Complete metadata is required 

Ideally international metadata standards should be followed.  It should be updated if any 
changes are made after delivery. It is also helpful to have a flight plan showing photo 
centres.  Metadata from the supplier should include:  

• type of photograph (e.g. true colour, colour infrared); 

• sensor, e.g. digital camera or scanned negative from an analogue 
photographic camera);  

• date and time of acquisition for each photograph, especially where a mosaic 
of dates is used;  

• pixel size and scan resolution in dots per inch if appropriate (for scanned 
prints or negatives);  

• part of the spectrum for each band number of a digital file (e.g. band 1 NIR 
light, band 2 red light, band 3 green light); 

• method of orthorectification, including software used and source of control 
points (e.g. dGPS, GPS, OS maps);and type of DEM used for 
orthorectification (e.g. OS Landform Profile 1:10,000 DTMs; NextMap, 
photogrammetric using previous aerial photos or those being commissioned); 

• RMSE in x, y and overall, including number and source of test points; 

• any radiometric pre-processing such as contrast stretching or compression. 

 

Patch 
definition 

Image 
quality Clumping  

Method 

Classification
 procedure 

Accuracy 
Testing

Method

Geometric

Time 

Radiometric 
and spectral

Spatial 
resolution 
(GRAIN)
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Pre-processing 
Contrast stretch 
Compression

Atmosphere 
Haze  
Cloud

Patch 
Shape

RMSE

Supervised

Unsupervised

Visual  
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Error matrix 

Visual 
interpretation

Visible true colour 
NIR false colour 

Shadow 
Phenology 

  Hard/Soft 

Figure 2.4: Factors affecting patch definition 
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3. IMAGE CLASSIFICATION 
 

3.1 Methods 
3.1.1 Rationale 
A three class image was required from the aerial photographs, which could then be 
sieved and clumped to produce a patch map (section 4.1.1).  The classes of interest 
here were exposed peat, mineral soil and vegetation.   

A variety of classification methods are available from visual interpretation such as the 
work conducted by Bower (1960, 1961), to automated methods such as unsupervised 
and supervised multispectral classification.  Multispectral classification allocates pixels in 
an image to thematic classes based on their reflectance in several parts if the 
electromagnetic spectrum (Casals-Carrasco et al., 2000; Campbell, 2002; Dean and 
Smith 2003; Cihlar et al., 1998).  The major advantage is that it has a repeatable 
framework that allows land managers to repeat the classifications over a number of 
timescales to monitor the progress of land management techniques (e.g. gully blocking 
or reseeding measures) or to assess the changes occurring in the landscape (e.g. as a 
result of fire).   

3.1.2 Unsupervised classification method 
Unsupervised classification schemes are fully automated procedures that classify data 
purely on their spectral properties with no prior knowledge of classes.  It is quick but 
requires post-classification interpretation of the classes produced, which may not relate 
well to ground conditions.  One of the main benefits of using an unsupervised classifier 
is that it enables spectral classes to be identified that may not be apparent to the 
analyst, in this case, the importance of shadow at Torside.   
Unsupervised classification was carried out on all three datasets for both the TS and 
UNG catchments using the ISOCLUST program in Idrisi Kilimanjaro (Eastman 2003).  
Initially the optimum number of five classes was detected by the ISOCLUST program.  
Interpretation of the results against field knowledge resulted in grouping into three 
classes (peat, mineral soil and vegetation) based on interpretation of the aerial 
photographs.  The combination of the classes which were merged varied with the 
imagery. 

The time taken to run the program depends on the size and resolution of the imagery 
used and the specification of the computer being used.  This is an important factor to 
take into consideration, as some computers may have difficulty processing large, high 
resolution imagery and the classification process may have to be split into a series of 
smaller images to be processed.  For example, on a PC with 1GB RAM and a 3.06 GHz 
Pentium 4 Processor it took around 2 hours to complete one run.  It is recommended 
that small extracts are used.  In both cases, the catchment outlet point was defined by a 
gauging station.  However, it would be preferable to use smaller, sub-catchments or 
isobasins (Lindsay et al., 2005, sections 4.2 and 6.1).   

3.1.3 Supervised classification method 
Supervised classification requires user intervention and knowledge from the field sites in 
the form of training data prior to running the classification (Lillesand et al., 2004).  It is 
more time-consuming but usually produces more meaningful results. 
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Kilimanjaro image processing software was used to run the maximum likelihood 
classification for the GM, UKP and NIR aerial photos and classify the images into Peat, 
Mineral Soil and Vegetation classes.  The following sequences of operations were 
followed: (i) collection and definition of training/testing data from TS and UNG; (ii) 
extraction of signatures: (iii) classification of images. 

(i) Collection of training/testing data 

Torside was used instead of UNG to collect training data as it was the larger of the two 
catchments enabling a greater number of training areas to be selected.  A total of 30 
stratified randomly selected sites were identified (10 for each land cover type), spread 
across the whole catchment, to ensure that a high level of variability in each land cover 
type was accounted for.  It is recommended that a total of 10 times as many pixels for 
each band in the image being classified should be collected for each class.  Therefore, a 
minimum of 30 training pixels should be allocated per class as there are 3 bands 
available.  At each point a minimum of five training/test areas, were recorded in the field.  
This was completed using a dGPS and by marking the areas on printouts of the aerial 
photographs.  It is important to note that the size of the area selected needed to be 
clearly visible on the aerial photograph and therefore the majority of the areas selected 
were greater than 30 pixels.  In practice the more sites and the larger the areas selected, 
the better the results tend to be.  Out of all the areas collected, 70% were used for 
training and 30% for testing.  The same method was repeated for the UNG catchment to 
provide a test data set for the UNG catchment.  The training and test areas were 
digitised as polygons in IDRISI Kilimanjaro.   

 (ii) Extraction of signatures 

The digitized training areas were used to extract signatures with the MAKESIG function 
of Idrisi Kilimanjaro (Eastman. 2003).  Each signature contains statistical parameters for 
the pixels inside the training areas.  It is obvious from the histograms for mineral soil 
(Figure 3.1) that the GM and UKP-TC images have been contrast stretched.  The 
distribution is very negatively skewed, so that parametric techniques such as maximum 
likelihood classification are unlikely to work well for these two data sets.   

 
GM UKP NIR 

Peat 

  

Mineral Soil 

  

Vegetation 

 
 

Figure 3.1: Frequency histograms of brightness values of training data for the three land 
cover classes for each of the image data sets. 
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GM 

 
UKP 

 
NIR 

  
 

Figure 3.2: Signature comparison charts for the three data sets. GM and UKP-TC band 
order; blue, green, red.  UKP-CIR band order NIR, red, green (i.e. reversed and 

beginning at longer wavelengths) 
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The signature comparison charts (Figure. 3.2) show that GM has the most distinct 
spectral responses, especially for peat, so is likely to produce a good classification.  The 
UKP-TC signatures are the least separable, differing in brightness (albedo) and very little 
in shape (spectral signature).  This would suggest that misclassification will be high for 
UKP-TC, especially where topography causes more differences in albedo which mask 
those between the land cover.  For instance, mineral soil will be confused with cotton 
grass, and peat with heather.   

In the UKP-CIR, vegetation has the most distinct signature, as expected.  Peat is similar 
to mineral soil, differing mainly albedo so that sunlit peat slopes reflect similarly to 
shaded mineral soil.  This suggests that the UKP imagery may have problems 
differentiating between the peat as and mineral soil.   

Overall, the three classes are most separable for GM and least for UKP-TC.  On spectral 
properties of the training data alone, GM is likely to produce the best patch maps.  
However, accuracy must be tested visually and quantitatively, and geometry must also 
be considered for pattern work.   

 (iii) Classification stage 

The training data set is strong so the maximum likelihood method was used, as 
recommended by Richards (1995).  The method assumes that the training data has a 
Gaussian normal distribution in all classes and all bands (Brown et al.1998), which was 
not the case for mineral soil in the GM and UKP-TC due to stretching (Figure 3.1), so 
poorer results were expected for these datasets.  Idrisi Kilimanjaro’s MAXLIKE was used 
to perform the classification (Eastman, 2003). 

3.1.4 Masking 
The catchment boundary was extracted from the LiDAR data and used to make a binary 
mask of zeros outside the catchment and ones inside it.  The outlet point for the 
catchment was defined by the location of the gauging station2.  The mask was multiplied 
by each unsupervised and supervised image to leave only the catchment classified, 
surrounded by black fill pixels.   

3.1.5 Accuracy assessment 
Accuracy of the classified images was first visually assessed by comparing against the 
aerial photographs and field knowledge. 

A statistical accuracy assessment was also conducted for each image and type of 
classification using a ground truth image for each dataset constructed from independent 
test areas at which the actual land cover was known from fieldwork.  Error matrices were 
produced showing the degree of correspondence between the class observed from 
fieldwork and the mapped class (from multispectral classification).  The matrix 
summarises the errors of omission (the number of pixels in a class that have been 
omitted from a class) and errors of commission (the number of pixels added to a class in 
error).  Overall accuracy is the sum of the principal diagonal in the error matrices and is 
the total of correctly classified pixels as a proportion of the number tested.  The kappa 
coefficient describes the significance of the error matrices allowing for sample size.  A 
value of 0.70 is regarded as good and indicates that the classification is 70% better than 
one occurring purely by chance (Mather 2004).  
                                                 
2 The outlet point used to define the catchment in section 4 is actually 100m downstream of the 
gauging station hence the difference in catchment shape compared to those in this section. 
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3.2 Unsupervised Classification results 

Unsupervised classification produced varying success for different catchment and data 
sources.  The TS catchment will be discussed first followed by the UNG catchment.   

3.2.1 Torside 
Get Mapping 

Unsupervised classification using GM (Figure 3.3(a)) produced a much poorer result at 
TS than at UNG (Figure 3.4(a)).  Vegetation was under-estimated and misclassified as 
mineral soil (Figure 3.3(a), right-hand box), due to cotton grass having similar spectral 
properties to the mineral soil at this time of year.  As with all most moorland vegetation 
types, the spectral reflectance of cotton grass changes seasonally, depending on 
whether it is producing new leaves, producing seeds or its leaves are senescent.  This 
could explain why there are similarities in the signatures between the cotton grass and 
mineral soil.  Some heather (Figure 3.3(a), left-hand box) has been misclassified as 
exposed peat class, due to shadow or recent burning that gives the heather a darker 
spectral appearance, thus over-estimating the peat class.  As a result of these 
similarities in spectral properties, the unsupervised classifier has difficulty separating the 
classes so inaccuracies occur.  The overall outcome is that unsupervised classification 
produces a poor land cover map.  The error statistics confirmed that this was the case 
(section 3.4). 

UKP True colour 

The UKP-TC images (Figure.3.3(b)) produced a much better unsupervised classification 
at TS than the GM discussed above (Figure 3.3(a)).  The mineral soil was more 
realistically mapped, with few problem areas, as in the northern part of the catchment 
where, once again, cotton grass has been misclassified as mineral soil.  There is also a 
large area of dwarf shrub heath vegetation and some rock outcrops at Torside Clough in 
the far left of the image that were misclassified as peat (white box in Figure 3.3(b)).  This 
area is in shadow, which reduces reflectance in all bands and makes the spectral 
properties of the vegetation similar to those of exposed peat.  Supervised classification 
methods that use training areas to identify the specific classes may help to reduce this 
problem of misclassification in the shadowed areas although may not eradicate the 
problem altogether.  In fact, this was a major problem that recurred for TS in all the 
image datasets and with all classification methods and proved impossible to rectify in the 
time available.  

Overall, the UKP-TC imagery produced a reasonable unsupervised classification.  
Mineral soil distribution was much more accurate, but the over-estimation of exposed 
peat would create problems when using the patches to analyse the spatial patterns of 
erosion risk (section 5.5).   

UKP colour infrared 

The UKP-CIR imagery (Figure 3.3(c) produced the best of the three unsupervised 
classifications due to the better discriminatory power of the near infrared band.  The peat 
class was more representative of the exposed peat but peat was still over-estimated, 
mainly in deeply shadowed area of vegetation (Figure.3.3(c), top left box)  This problem 
however, is greatly reduced compared to the UKP-TC imagery.  In addition, mineral soil 
was slightly over estimated as illustrated by the right-hand box, possibly due to 
confusion with burned peat. 
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Figure 3.3 (a): Unsupervised classification for Torside using Get Mapping aerial 

photographs. Red = Exposed Peat, Yellow = Mineral soil and Green = Vegetation. 

 
Figure 3.3(b): Unsupervised classification for Torside using UKP true colour aerial 
photographs (1997-2001). Red = Exposed Peat, Yellow = Mineral soil and Green = 
Vegetation. 
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Figure 3.3(c): Unsupervised classification for TS using UKP colour infrared aerial 
photographs.  Red = Exposed Peat, Yellow = Mineral soil and Green = Vegetation. 

 
3.2.2 Upper North Grain 
Get Mapping 

The GM imagery results were realistic for the eastern part of the catchment.  The right-
hand box of Figure 3.4(a) shows a mineral-floored gully with exposed peat walls and 
extensive areas of mineral soil to the east, representing an advanced stage of erosion.  
The classification also accurately reflected peat floored gullies, which represent an early 
stage of incision, and gullies with (re-)vegetated floors, indicating trapping of sediment.  
However, in the north western part of the image a large area of cotton grass was 
misclassified as mineral soil (Figure.3.4 (a), left-hand box).  

UKP true colour 

The UKP-TC images (Figure 3.4 (b)) produced poor results and could not be used for 
further analysis.  Large areas of vegetation were misclassified as exposed peat and 
cotton grass was classified as mineral soil.  Exposed peat (Figure 3.4(b), box) in gully 
walls was over-estimated due to shadow.   

UKP colour infrared 

The UKP-CIR produced a much better classification than the other two data sets (Figure 
3.4(c)).  Peat floored gullies are clearly identified and the amount of peat identified is 
more realistic, although slightly under-estimated in favour of vegetation  This may be due 
to the fact that certain areas of the peat are naturally revegetating so that the spectral 
properties of the peat are more like vegetation, an issue addressed in section 3.5.  
Cotton grass misclassification has been greatly reduced compared to GM and UKP-TC 
and the vegetation class was more representative.  
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1

2

 
Figure 3.4(a): Unsupervised classification of Upper North Grain using Get Mapping true 

colour aerial photographs. Red = Exposed Peat, Yellow = Mineral soil and Green = 
Vegetation. 

1

Figure 3.4(b): Unsupervised classification of Upper North Grain using UKP true colour 
aerial photographs (1997-2001). Red = Exposed Peat, Yellow = Mineral soil and Green 

= Vegetation. 
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Figure 3.4(c): Unsupervised classification of Upper North Grain using UKP colour 
infrared aerial photographs.  Red = Exposed Peat, Yellow = Mineral soil and Green = 

Vegetation. 
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3.3 Supervised Classification Results 
The supervised classification results visually were much better than the unsupervised.  
All classes in all three images were more realistic and problems with shadow were 
reduced although not entirely eradicated.   

3.3.1 Torside Clough 
Get Mapping 

Supervised classification of the GM imagery was initially carried out using only three 
classes.  Results were good, with bare peat and mineral soil representing the landscape 
well.  However, in the first attempt (not illustrated here) some areas of peat were 
misclassified as vegetation, therefore, an additional peat class (burnt peat) was identified 
to more fully represent the variability in peat reflectance.  The two peat classes were 
merged to form a single peat class post-classification.  Improving the training data set by 
refining the other classes and adding a new peat class has enabled a more 
representative training data set to be produced allowing for a more accurate 
classification (figure 3.5(a)).  Misclassification of pixels was greatly reduced compared to 
unsupervised results.   

 

 
Figure 3.5(a): Supervised maximum likelihood classification of TS using Get Mapping 

aerial photographs. Red = Peat, Yellow = Mineral soil and Green = Vegetation. 

 

UKP true colour 

The UKP-TC imagery proved to be more difficult and problematic to classify, as 
expected due to the artefacts and compression issues.  First attempts using three 
classes were largely unsuccessful.  Large areas of vegetation were misclassified as peat 
and mineral soil.  Attempts to improve the classification included re-digitization of the 
training data and splitting the vegetation class into three separate classes (veg 1, veg 2, 

 24



McMorrow, Lindsay and Liddaman, 2006, Mapping and Encoding the Spatial Pattern of Peat Erosion  
_____________________________________________________________________________ 

and veg 3), creating a total of 5 classes. After classification, the vegetation classes were 
reclassed to a single vegetation class.  This greatly improved the classification, although 
there was still a large area of vegetation in shadow misclassified as peat (white box in 
Figure 3.5(b)).  Peat in this imagery varied little in the spectral range so only one peat 
class was used, unlike in the GM imagery.  The outcome was a reasonable 
classification; however, the over-estimation of peat in the large shadowed area was still 
cause for concern. 

 

 
Figure 3.5(b): Supervised classification maps of TS using UKP true colour aerial 
photographs (1997-2001). Red = Exposed Peat, Yellow = Mineral soil and Green = 
Vegetation.  

 

UKP colour infrared 

It is important to note that at the time the UKP-CIR imagery was flown in 2005, some 
reseeding work had been carried out in the TS catchment to revegetate exposed peat 
areas.  It is therefore important that these areas are clearly identified so a fourth class 
(revegetated peat) was included in the classification.  As this project is interested in peat 
prior to reseeding, this class was reclassed as peat after classification.  In addition, other 
management measures carried out in the TS catchment involved laying down geojute 
matting on the gully walls of exposed peat.  to stabilize the peat surface, inhibit the 
removal of peat into the channel and help prevent the new seeds being blown away.   
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Figure 3.5(c): Supervised classification of TS using UKP-NIR.  Red = Peat, Yellow = 

Mineral soil and Green = Vegetation. 

 

 

Geojute Matting

Figure 3.6:  Geojute matting on peat walls in the Torside catchment. 

 

Geojute (Figure. 3.6) was misclassified as mineral soil.  As the map was intended to 
show the baseline situation prior to restoration, these areas had to be identified and 
reclassed as peat.  It was assumed that the geojute areas were uniform and wider, 
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whereas mineral soil areas was characterised by much thinner, more discontinuous 
bands.  Areas of the image where geojute could be visually recognised were masked off 
and pixels within them forming bands of above a critical threshold width were reclassified 
as geojute.  These were then added back to the rest of the classified image (Figure 3.7) 
and finally reclassed as peat.  The Idrisi procedure is shown in the flow chart Figure 3.8.  

 

 
Figure 3.7: A geojute area in the TS catchment, to the northwest of Bleaklow Head.  

Mineral soil forming bands below a critical width were identified as geojute (step 10 in 
Figure 3.8) before being reclassed as peat to represent pre-restoration condition. 

 

Initial interpretation after the reseeded areas and geojute had been dealt with, suggested 
that the classification of the UKP-CIR imagery represents the landscape reasonably well.  
The same shadowed area located in the white box in figure 3.5(c) is a problem as is 
misclassification of burnt peat as mineral soil in Joseph’s patch (figure 5.4). 
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1. DIGITISE broad geojute area polygons from visual interpretation  
[Geojute areas.vec]

2. Create raster mask to make with INITIAL then POLYRAS  geojute areas image 

 
Figure 3.8: Flowchart showing steps to identify mineral soil which is actually geojute-
covered peat on UKP-CIR classified image and reclass them as peat. 

[Geojute areas.rst]

3. IMAGE CALCULATOR to mask out non-geojute areas from classified image, leaving only 
geojute areas classified, i.e. 

[Geojute_areas] * [nir_ts_maxlike4rc3_v3_ws] = [nir_ts_maxlike4rc3_v3_ws_jutemask] 
geojute-masked classified image 

4. RECLASS mineral soil in geojute-masked classified image to 0, everything else to 1 to make  
axlike4rc3_v3_ws_jutemask_rc] geojute mask [nir_ts_m

5. Run DISTANCE on geojute mask to make 
[nir_ts_maxlike4rc3_v3_jutemask_rc_distance] 

Calculates istance outward from non-geojute areas – analogous to width of geojute areas 

distance image 

 d

6. GROUP geojute mask [nir_ts_maxlike4rc3_v3_ws_jutemask_rc] to make 
maxlike4rc3_v3_jutemask_rc_group].  Groups pixels with value 1 (non-geojute) into 

patches, each with a unique identifier 

grouped geojute 
mask  [nir_ts_

7. EXTRACT maximum distances for each non-geojute patch to make 
[nir_max_distance.avl], where feature definition image = grouped geojute mask 

[nir_ts_maxlike4rc3_v3_jutemask_rc_group], image = distance image 
[nir_ts_maxlike4rc3_v3_jutemask_rc_distance] and attribute= max 

distance attribute value file 

8. ASSIGN distance attribute file [nir_max_distance.avl] to grouped geojute mask 
[nir_ts_maxlike4rc3_v3_jutemask_rc_group] to make 

in which each non-geojute patch has a single max distance to geojute 
max distance image [nir_max_distance.rst] 

9. Threshold  max distance image [nir_max_distance.rst] to make 
[nir_max_distance_rc] using RECLASS. 

Values >1 are regarded as geojute and given value10, everything else = 0  

reclassed max distance image 

10. IMAGE CALCULATOR  to add reclassed max distance image to original classified image to 
create an containing classes 1,2,3 and 12, 

[nir_max_distance_rc] + [nir_ts_maxlike4rc3_v3_ws] = [nir_ts_maxlike4rc3_v3_ws_geojute]  
classified image plus geojute, 

11. RECLASS class 12 (geojute) as class 1 (peat) in the classified image plus geojute 
[nir_ts_maxlike4rc3_v3_ws_geojute] to create 

[nir_ts_maxlike4rc3_v3_ws_geojute_rc_peat3] 
adjusted 3 class image 
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3.3.2 Upper North Grain 
Once the TS classifications had been carried out, the signatures produced for each of 
the datasets in the TS catchment were used to classify UNG.  As the area does not 
contain burnt peat or reseeded areas, only the signatures for the first three initial classes 
(exposed peat, mineral soil and vegetation) were used.   

Get Mapping 

The GM mapping classification of UNG (Figure. 3.9(a)) worked well.  Misclassification of 
cotton grass as mineral soil was greatly reduced compared to unsupervised results.  
Peat-walled gullies that are characteristic of this catchment have been clearly identified, 
as have and mineral-floored gullies.  However, the peat may have been over-estimated 
in places due to shadow on gully walls, but under-estimated for sunlit peat walls of 
gullies.  As the shadowed gully walls are usually also peat, they have been correctly 
classified, but little could be done to redress the sunlit problem other than have two peat 
classes, sunlit and shaded.   

Overall, it could be said that the signatures taken from the GM classification of the TS 
catchment represent the variability in the land cover types in UNG.  However, signatures 
taken from the UKP-TC and UKP-NIR classification of TS did not work as well in 
classifying the equivalent UNG dataset. 

UKP true colour 

UKP-TC imagery produced a reasonable result although vegetation (cotton grass) was 
again over-estimated and misclassified as mineral soil (Figure. 3.9(b)).  This could be 
due to the quality of the imagery, but also a result of the time of day and season (late 
summer) the dataset was flown.  Peat has been identified well and many of the peat-
walled gullies can be clearly located.   

This suggests that the TS signatures produced for UKP-TC imagery have worked 
reasonably well in identifying the land cover patches in UNG, but do not cover the full 
variability in the vegetation.  Further experimentation with more training areas may 
improve this, however, the problem is a partly a result of compression artefacts and 
stretching, so effort was directed at improving results from the UKP-CIR dataset. 

UKP colour infrared 

The NIR imagery produced some unexpected results (Figure. 3.9(c)).  Signatures from 
TS did not transfer well, suggesting that they did not represent the full variability in the 
land cover types.  This is to be expected as the NIR band would emphasise differences 
in vegetation and peat between catchments which were not seen at visible wavelengths.   

Peat classified reasonably well but its spectral properties were more closely matched to 
the signatures produced for revegetating peat at TS.  Therefore, the revegetating peat 
signature was tried in place of the original exposed peat signature.  Mineral soil was 
largely over estimated; misclassified pixels should have been vegetation.   

A new set of training areas within the UNG catchment were drawn and the classification 
was re-run.  Mineral soil was still over-estimated (Figure. 3.9(c)), so prior probabilities 
were adjusted to increase the chances of misclassified pixels being assigned to the 
correct class.  Mineral soil was given a low probability and vegetation a high probability.   

This simple method worked well.  The remaining misclassified pixels are a scattering of 
single pixels that can be sieved out with a filter reclassing them to the group having the 
longest shared boundary (section 4.1.1).   
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Figure 3.9(a): Supervised classification of UNG using UKP true colour aerial 
photographs (1997-2001).  Red = Peat, Yellow = Mineral soil and Green = Vegetation. 

 
(b) (c) 

Figure 3.9(b): Supervised classification of UNG using GM true colour aerial photographs 
(1997-2001).  Red = Peat, Yellow = Mineral soil and Green = Vegetation. 

Figure 3.9(c): Supervised classification of UNG UKP colour infrared aerial photographs.  
Red = Peat, Yellow = Mineral soil and Green = Vegetation. 

 

 

3.4 Results of statistical Accuracy Assessment 
Table 3.1 summaries the overall accuracy of the classified maps and provides the Kappa 
index for each image.  Supervised classification produced more accurate results than 
the unsupervised methods, as expected.  The UKP-CIR produced the highest accuracy 
for UNG.  GM had the highest accuracy for TS, closely followed again by UKP-CIR.  The 
UKP-TC imagery produced the poorest results for both the unsupervised and supervised 
methods.   
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Tables 3.2 and 3.3 provide examples of the error matrices, in this case, for supervised 
classifications of the UKP-CIR imagery.  The major sources of error for both catchments 
are for class 2 (mineral soil).  The high errors of commission and omission are largely 
due to the small number of test pixels available.  The amount of mineral soil found within 
both catchments is, proportionately, much lower than the other two classes, making it 
difficult to locate a high number of test areas.  However, the overall accuracy for both 
maps is considered to be of a good standard. 

Statistical accuracy assessment suggests that either the GM or UKP-CIR imagery 
should be used to produce patch maps for encoding erosion pattern.  However, when 
geometric accuracy is also taken into account, the UKP-CIR is the best currently 
available source.  Although the classification results for GM are good, geometric 
properties are too poor to be used for identifying connectivity of patches to the channel 
network.   

Table 3.1:  Thematic error statistics for each classification  

Image 
Source 

Catchment Statistic Unsupervised Supervised 

Overall error 0.5343 0.0537
TS 

Kappa 0.1928 0.8429
Overall error 0.4277 0.0154

 GM 
UNG 

Kappa 0.0506 0.7638
Overall error 0.3893 0.4722

TS 
Kappa 0.3515 0.1732
Overall error 0.8116 0.6567

UKP-TC 
UNG 

Kappa 0.0229 0.0327
Overall error 0.0919 0.0705

TS 
Kappa 0.7261 0.7837
Overall error 0.4312 0.0083

UKP-NIR 
UNG 

Kappa 0.1199 0.9083
 

Table 3.2:  Error Matrix for TS using UKP-CIR 

Columns = observed in field, Rows = mapped on classified image 
 1 Peat 2 Minsoil 3 Veg Total Error C 

0 Unclassified 456 1041 0 1497 1.0000 
1 Peat 5477 160 859 6496 0.1569 

2 Minsoil 55 400 445 900 0.5556 
3 Veg 5 0 33949 33954 0.0001 
Total 5993 1601 35253 42847  

Error O 0.0861 0.7502 0.0370  0.0705 
 

Overall Kappa =         0.7837 

ErrorO     = Errors of Omission   (expressed as proportions) 
ErrorC     = Errors of Commission (expressed as proportions) 
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90% Confidence Interval  =  +/-  0.0020    (0.0685 - 0.0725) 
95% Confidence Interval  =  +/-  0.0024    (0.0681 - 0.0729) 
99% Confidence Interval  =  +/-  0.0032    (0.0673 - 0.0737) 

 
 

Table 3.3: Error Matrix Analysis for UNG using UKP-CIR  

Columns = observed in field, Rows = mapped on classified image 
 1 Peat 2 Minsoil 3 Veg Total Error C 
      

1 Peat 970 8 28 1006 0.0358 
2 Minsoil 24 224 117 365 0.3863 

3 Veg 24 33 26674 26731 0.0021 
Total 1018 265 26819 28102  

Error O 0.0472 0.1547 0.0054  0.0083 
 

Overall Kappa =         0.9083 

ErrorO     = Errors of Omission   (expressed as proportions) 
ErrorC     = Errors of Commission (expressed as proportions) 
 
90% Confidence Interval  =  +/-  0.0009    (0.0074 - 0.0092) 
95% Confidence Interval  =  +/-  0.0011    (0.0073 - 0.0094) 
99% Confidence Interval  =  +/-  0.0014    (0.0069 - 0.0097) 
 

 

 

3.5 Discussion and Summary 
Having assessed both radiometric and geometric image quality and thematic accuracy 
for each of the data sets, the UKP-CIR imagery was selected for mapping and encoding 
the spatial pattern of peat erosion.  The NIR band separates the vegetation from the 
peat better.  It can therefore be recommended that any further imagery obtained should 
contain the NIR band.  It is also important that all future imagery is fully orthorectified to 
enable geometric error to be kept to a minimal.  This will enable the aerial photos and 
products extracted from the remotely sensed data to be used in conjunction with other 
datasets such as LiDAR.   

By combining topographic information with image data, it maybe possible to improve 
classification results, especially where land cover types have similar spectral properties 
(e.g. heather and peat, cotton grass and mineral soil, geojute and mineral soil) but 
different topographic associations.  They may be situated on very different elevations, 
slopes or aspects.  Therefore, by combining slope, elevation or aspect layer in the 
classifier, ambiguities may be resolved (Jones et al., 1988, Lillesand et al., 2004).   

To reduce the shadow and sunlit slope problem, either ratios or a simulated illumination 
layer derived from the DEM could be included, or full topographic normalisation could be 
carried out (Ekstrand, 1996). 

 32



McMorrow, Lindsay and Liddaman, 2006, Mapping and Encoding the Spatial Pattern of Peat Erosion  
_____________________________________________________________________________ 

Another possible option is to use airborne scanner imagery that use a greater number of 
narrower spectral bands which maybe able to separate the classes better.  Scanners 
incorporating the near infrared and shortwave infrared parts of the electromagnetic 
spectrum, such as the NERC Airborne Thematic Mapper, should reduce thematic 
classification error.  Use of hyperspectral sensors such as CASI with its many narrow 
bands (good spectral resolution) would also be expected to reduce error, especially for 
reseeded peat.  The SPECIM AISA Eagle and Hawk flown on 13 July 2006 combines 
the two advantages of spectral range and resolution (NERC ARSF, 2006).   

The classified images have a number of potential uses.  First, they can be used to 
visually identify areas of significant erosion and potential problem areas.  Second, they 
can be used to encode pattern quantitatively and, when combined with a good quality 
DEM, used to derive erosion metrics (section 4).  

They can be used as the baseline from which to judge the success of management 
techniques.  However, images produced by a simple three class hard classification will 
not be suitable for monitoring restoration works, whether the rate of revegetation after 
reseeding areas, the rate at which new vegetation grows through geojute, or the success 
of gully blocks in revegetating gullies.  As natural and managed revegetation progresses, 
the spectral signature will be mixture of peat and vegetation, or peat and (mineral soil-
like) geojute.  Additional intermediate classes of revegetating peat will have to be used 
(as here).   

A more appropriate alternative would be soft classification, including fuzzy classification 
and spectral unmixing (Foody, 1996 and 2000; Mehner et al., 2004).  Unlike hard 
classification, pixels are not forced to belong to a single class.  Instead, a three class soft 
classifier would produce three grey-scale images showing the probability of belonging to 
peat, mineral soil or vegetation.  Spectral unmixing, would produce estimates of the 
relative proportions peat, mineral soil and vegetation in each pixel, that is, fractional 
cover, analogous to percent cover in a plot.  These methods are more difficult to 
implement, since most require ‘pure’ pixel training data (e.g. pixels which are 100% 
peat).  It is also more difficult to make a quantitative assessment of classification 
accuracy.   

Linear unmixing methods were tried for a sub-catchment at Torside.  Promising results 
were obtained, but the approach has limited value for encoding pattern, because the 
output had to be thresholded to produce a simple three class map.  However, given 
more time, the mean probability of membership to the peat class (or measures of central 
tendency and dispersion for that membership) could be extracted for each patch as a 
way of expressing thematic classification error.  

Other alternatives to multispectral classification which could usefully be explored include 
artificial neural networks (ANN) and support vector machines (Berberoglu et al., 2000; 
Huang et al., 2002; Keramitsoglou et al., 2006; Pal and Mather, 2005).   
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4   ENCODING 
 
4.1 Methods 
The 3-class image was imported from IDRISI to TAS GIS, a freely available GIS 
package (http://www.sed.manchester.ac.uk/geography/research/tas/) specifically 
designed for environmental modelling and terrain analysis (Lindsay, 2005).  TAS was 
used to extract all of the patch metrics and for pre-processing of the class image. 

4.1.1 Pre-processing the Class Image: 
The 3-class image contained numerous small patches that were a few grid cells in size.  
Although this occurs very commonly image classification procedures, these small 
patches are irrelevant from a management perspective.  Furthermore, processing an 
image containing numerous patches adds considerably to the complexity of analyses 
and database size.  In some cases, this can make analysis of any resulting database 
impossible.  This problem is frequently handled by passing a modal filter over the image, 
i.e. a filter that replaces the grid cell at the centre of a roving kernel with the most 
frequently occurring class within the kernel.  This approach suffers from several 
problems: i) it modifies all patch boundaries within the image, regardless of their size, ii) 
it cannot be guaranteed that all small patches are removed, and iii) new small patches 
can be created as a result of the filter.  Thus, an alternative approach was developed for 
this work to eliminate small patches. 

Figure 4.1 describes the sieve procedure used to remove small patches from the class 
image without affecting patch boundaries.  A TAS GIS script was also developed to 
automate the procedure for future use (Table 4.1). 

 

 
Figure 4.1: Procedure used to sieve small patches from the classified image. 
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Table 4.1: TAS GIS script for automation of the sieve procedure. 
 

//TAS GIS script for performing a sieve to remove small patches from a class image. 

//Inputs are the class image name and the threshold size. 

//Outputs are the cleaned class image and a new patch ID image. 

 

//Written by John Lindsay, July 24, 2006. 

 

image = 'ENTER CLASS IMAGE NAME HERE'*1  //Renames the class image 

old patch ID = CLUMP('image',true) 

patch area = AREA('image',false) 

NWLSB = NEIGHBOURPATCH('old patch ID',false) 

thresholded image = IF('patch area'<=5,'NWLSB','old patch ID')   

//Change the threshold value in last line as required 

final class image = EXTRACTSTATS('image','thresholded image',dominant,false,(-9999))  
//This last line is equivalent to an ASSIGN operation 

final patch ID = CLUMP('new class image',true) 
 

 

The sieve procedure required development of a new algorithm to calculate the 
neighbouring patch with the longest shared boundary, i.e. the ‘dominant neighbour’ 
(Figure 4.2).  This algorithm is not available in GIS packages other than TAS. 

 

 
Figure 4.2: The new neighbour with the longest shared boundary algorithm in the TAS 

GIS software. 
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The result of the sieve procedure is a new class image in which all grid cells that are less 
than a user-specified threshold are assigned the class value of the patch in which they 
are embedded.  A threshold of 5 grid cells, or 6.25 m2, was used in this work.  For the 
Torside catchment, this threshold value resulted in a reduction in the number of patches 
from 302,565 to 62,143.  Sieving reduced the number of patches for UNG catchment 
from 28,404 to 5130.  Notice that the number of patches in the original class map of 
Torside catchment (Fig 3.5(c)) would have been prohibitive for statistical analysis in 
most software packages. 

A final Patch ID map was created from the new class image resulting from the procedure 
outlined in Figure 4.1 by using the clump (group) algorithm.  It should be noted that 8-cell 
connectivity was used in all clumping procedures, i.e. diagonals were used to group 
patches together.  These final patch IDs were then used to extract metrics. 

4.1.2. Extracting an Appropriate Channel Network 
Connectivity with the stream was one of the main patch metrics of interest.  Deriving an 
appropriate stream channel network is, however, very difficult in this type of 
environment.  Many of the headwater streams in the Bleaklow area occur in gullies.  
Most traditional stream extraction methods, particularly those based on simulating 
channel initiation, assume that network extent (i.e. channel head locations) can be 
determined using empirical relationships involving contributing area and/or slope.  It is 
difficult to predict channel head locations using these relationships in peatlands.  
Peatland gullies typically form on gentle slopes.  Furthermore, peatland gully heads are 
often located very near divides and their locations can reflect pre-genetic conditions (i.e. 
micro topography before the gully formed) rather than a contemporary quasi-equilibrium 
state.  Thus, traditional methods of channel network extraction tend to either 
underestimate the drainage density in the headwaters of peatland catchments in the 
Bleaklow region, or to overestimate channel density in parts lower in the catchment 
(Lindsay and Evans, 2006).  That is, it can be very challenging to find an appropriate 
threshold in upslope area and/or slope to accurately represent channel structures in 
these environments.  As such, an alternative approach was developed based on 
morphological definition. 

The lower quartile (LQ) method (Lindsay, 2006) operates by running a filter over a digital 
elevation model (DEM).  This filter calculates the percentile value of the centre cell with 
respect to the distribution of elevations within the filter window.  The LQ calculations 
were based on a 2 m LiDAR DEM (section 2.1).  A 50 m diameter circular window was 
used to calculate percentile.  Clearly, however, the appropriateness of the selected 
window diameter depends on the grid resolution relative to the scale of topographic 
features.  Grid cells that were within the lower quartile of the distribution of elevations of 
their neighbourhood were flagged.  Thus, the algorithm identified grid cells that were in 
relatively low local topographic positions.  Unlike most other morphologically-based 
channel extraction algorithms, the LQ technique avoids defining local minima in ‘v’-
shaped topographic profiles, which can be a problematic exercise.  Nonetheless, this 
approach to channel mapping is only appropriate in fluvial landscapes.  In regions 
containing numerous lakes and wetlands, the algorithm will pick out the edges of 
features. 

Disjoint channel segments resulting from the thresholding of the percentile image in the 
above procedure were connected using a flow-tracing algorithm.  TAS’ drainage path 
analysis algorithm follows the flow path from source cells (i.e. all channel segments) until 
another non-background grid cell is encountered.  This yielded a continuous, unbroken 
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network of channels.  Because it is generally desirable to have single-cell wide channel 
networks for terrain analysis, the network was post-processed using the line-thinning 
algorithm available in TAS.  The 2 m resolution channel network grid was then 
resampled, using a nearest neighbour resampling algorithm, to match the resolution of 
the class image (0.5 m). 

Figure 4.3 shows the resulting single-cell wide, continuous channel network for a sub-
section of Torside catchment.  The algorithm did an excellent job of distinguishing 
between the high drainage density of the intensively gullied headwaters and the lower 
channel density in the lower parts of the catchment.  

 

 
Figure 4.3. Channel network extracted for part of Torside catchment using the LQ 

method. 

4.1.3. Selection of Metrics 
A GIS can be used to extract numerous patch metrics. In fact, there are at least 19 
common landscape ecology patch metrics used to describe shape alone (McGarigal and 
Marks, 1995).  It can be tempting to extract a suite of metrics to enter into a statistical 
analysis; however, this approach is inappropriate.  Patch metrics are often highly 
correlated because they are frequently derived from the same base metrics (e.g. area, 
perimeter, length, etc.). Since the reliability of many statistical models is severely 
compromised by the increased number of and correlation among predictor variables, it is 
wise to be parsimonious with the selection of variables. 

Ten metrics were extracted for each patch in the Torside and UNG images (Table 4.2).  
Each metric describes a characteristic of the patch with respect to the land cover, shape 
(i.e. morphometric), topography, or connectivity with the stream.  Topography-type 
metrics were calculated by extracting information about the terrain within the area of 
each patch.   

Terrain characteristics were based on the 2 m LiDAR DEM. TAS’ descriptive statistics 
module was used to create text files for each of the terrain metrics, which could then be 
easily imported into an Excel spreadsheet.  Emin and Emax were extracted as intermediate 

 37



McMorrow, Lindsay and Liddaman, 2006, Mapping and Encoding the Spatial Pattern of Peat Erosion  
_____________________________________________________________________________ 

metrics to calculate patch relief (R), which was calculated in the spreadsheet rather than 
extracting it directly in the GIS.  Slope (measured in degrees) was calculated for the 
entire DEM using the available algorithm in TAS and extracted at a patch average level.  
Maximum flow length was calculated using the downslope flow-path length (a.k.a. 
distance to outlet) algorithm.  This required using the patch ID image as a mask.   

Connectivity was calculated by evaluating the maximum value in the stream channel 
image to occur in each patch.  Thus, if a patch is connected to the stream network it 
would have a maximum value of 1 (connected), else it would have a value of 0 
(disconnected).  Again, this can be easily calculated and converted to a text file by using 
TAS’ descriptive statistics module. 

 

Table 4.2: List of measured patch metrics. 

Metric Type Metric Name (units) Symbol Variable Description 

Land Cover Patch type  Class_ID Describes whether the patch 
is peat (1), mineral soil (2) or 
vegetation (3)  

Area (m2) A Area_m2 Patch area 

Perimeter (m) P Perim Patch perimeter 

Morphometric 

Shape index S Shapeind Perimeter / Area 

Minimum elevation 
(m) 

Emin Min_elev Minimum elevation in a 
patch 

Maximum elevation 
(m) 

Emax Max_elev Maximum elevation in a 
patch 

Patch relief (m) R Max_rel Maximum minus maximum 
elevation 

Average slope 
(degrees) 

Savg Avgslope Average slope of patch 

Topography 

Maximum flow length 
(m) 

Lmax Max_flow Maximum flow path length 
running though a patch 

Connectivity Connectivity with the 
stream 

C Connect Boolean variable: true 
(connected, 1) or false 
(unconnected, 0), indicating 
whether a stream runs 
through a patch 
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Figure 4.4: Connectivity map for TS with 1 km grid 

 

Each of the metrics in Table 4.2 can be theorised to have a potential impact on the 
erosive potential of a patch.  It is envisioned that, aside from patch type which will clearly 
have a very significant impact on patch erosion, the topography and connectivity patch 
metrics will be most important at controlling erosion.  Therefore, a connectivity map was 
produced for each catchment by cross-tabulating connectivity against land cover class3 
(Figures. 4.4 and 4.5).  The most significant patches are likely to be connected peat, 
shown as red.  Interpretation of the connectivity images is covered in section 5.2.4. 

 

                                                 
3 This was done in TAS but it can be done with other GIS such as MapInfo or ArcGIS using the 
database provided.  Note that the outlet point used to define the UNG catchment here was 
actually 100m downstream of the gauging station, as used to define it in section 3.  This explains 
the difference in catchment shape. 
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Figure 4.5: Connectivity map for UNG with 100m grid. 

 

4.2. Discussion 
Several new algorithms and procedures needed to be developed to perform the metric 
extraction on the class image.  In particular, this work has relied heavily on specialized 
software, TAS GIS, which was modified to facilitate this research.  TAS is a free software 
package that is easily available to anyone who would wish to replicate this method in the 
future. 

Some important considerations must be made however.  First, the quality of the image 
classification and the characteristics of the landscape itself greatly impact the extraction 
of patch metrics.  If the class image contains numerous small patches, perhaps due to 
error, simplification of the image must be performed.  In this report, we have 
recommended the use of a sieving procedure for reducing the number of ‘irrelevant’ 
patches.  This procedure is highly effective and does not corrupt the quality of larger 
patches.  However, the dominant neighbour algorithm described above is slow-running 
and can act as a bottle-neck in the processing of patch metrics.  This fact, combined with 
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the difficulty of analysing extremely large databases, will place a practical limit on the 
size of catchment that can be processed (section 6.1). 

In this work we have extracted patch metrics for two catchments within the Peak District 
National Park.  Catchments are defined by the area draining to a point.  The size of the 
catchment is extremely dependent on the location of these outlet points.  In our case, the 
outlet points defining our catchments of interest were located because of available 
discharge data (i.e. the location of monitoring stations). However, there is no reason why 
future work involving this method of metric extraction could not be applied to catchments 
that are defined using other methods. For example, it might be useful to consider the 
sub-catchments of a stream network (i.e. the areas draining each link in the network) or 
to compare catchments of a similar Strahler stream order.  However, since the 
procedure is limited by the number of patches that can be practically analysed, a logical 
basis for defining catchments might be catchment area.  Lindsay et al. (2006) describe a 
simple method, called the isobasin method, of defining multiple catchments of a 
specified area.  This may also serve as a useful approach for further sub-dividing larger 
catchments into smaller sub-catchments in order to evaluate the within-catchment 
variability in peat patch characteristics. 

The selection of appropriate patch metrics is imperative to this work.  In particular, it is 
important to consider: (i) the relevance of a metric to the processes involved in peat 
erosion, (ii) the ease with which a metric can be calculated, (iii) the number of metrics 
that can be reasonably entered into a statistical model, and (iv) the redundancy of 
metrics that are derived using similar base metrics.   

Not all of the ten patch metrics in Table 4.2 are necessary for the statistical analyses 
(section 5).  Minimum and maximum elevation are intermediate metrics used to evaluate 
patch relief, and have no physical importance themselves.  Patch relief and average 
slope are both measures of the potential energy available for erosive processes within a 
patch, so that both are not required in the analysis.  Maximum flow length is related to 
maximum distance that eroded peat must travel over a patch before entering either the 
stream or a neighbouring patch.  This can be seen in two ways; either as implying a long 
transit time, so of less importance to erosion, or as offering a greater opportunity to 
entrain sediment by surface wash or creep.  

Connectivity with the stream is probably the most useful metric for the erosive potential 
of a patch, perhaps in combination with slope, area and flow length.  Connectivity is, 
however, extremely dependent on the quality of the channel network that is used to 
determine connectivity, in particular the ability to accurately represent network extent.  It 
was recommended that traditional methods for extracting channel networks from DEMs 
do not work well in peatland environments.  Instead, a morphologically based method, 
which identifies areas of low topographic position, is advocated here. 
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5 STATISTICAL AND SPATIAL ANALYSIS 
 
5.1 Methods 
5.1.1 Importing into SPSS 
The Excel files for Torside (TS) and Upper North Grain (UNG) were imported separately 
into SPSS ©.  A third file of peat patches from both catchments was produced to enable 
comparative tests to be carried out.  The first variable in each file was patch ID, so that 
results could be related back to spatial position in TAS.  This enabled map outputs to be 
produced from new variables generated in SPSS. 

5.1.2 Generating descriptive statistics 
The three nominal variables, connectivity (unconnected, connected), patch type (peat, 
mineral, vegetation) and catchment (UNG, TS) were used to select subsets of the data.  
Descriptive statistics for five key quantitative metrics (Area_m2, Shapeind, Max_rel, 
Max_flow and Avgslope) were calculated for these subsets with SPSS EXPLORE 
function, and used to compare between and within catchments for different patch types 
and connectivity.  For instance, means and standard deviations of connected peat 
patches at TS were compared to those at UNG (between catchment comparison), and 
connected and unconnected peat patches were compared for TS (within catchment 
comparison).  Analysis concentrated on connected peat patches because coupling of 
bare peat slopes with channels is associated with higher sediment yield (Evans and 
Warburton, 2005; Evans et al., 2006 in press) and, therefore, greater erosion risk.  

5.1.3 Comparing groups 
Analysis of variance (ANOVA) was used to test whether variation in the characteristics if 
patches was significantly greater than variation within them; for instance, if area or 
average slope of connected peat patches varied more between catchments than within 
them.  

Student’s t-test was used to ascertain if differences between metrics were significantly 
different for catchments or types of patches.   

5.1.4 Erosion risk maps 
As an example of the type of modeling that can be done using the metrics database, 
new potential erosion risk metrics were computed.  Several combinations of metrics and 
different ways of combining them were tried.  Two variants using Area_m2 and Avgslope 
are presented here.  These metrics were selected following the rationale explained in 
section 4.1.3 and because they were not co-correlated, but others combinations are 
valid. 

Errisk2 showed relative risk within a catchment and was produced by first dividing 
Area_m2 and Avgslope separately into ten percentile classes using the SPSS 
CATEGORISE function.  The resulting new variables, AREA10 and SLOPE10, were 
then summed and divided by two to produce risk score ranging from 1-10 in each 
catchment.   

Errisk4 showed risk between catchments.  Area_m2 and Avgslope were scaled from 1-
10, where 1 was the global minimum value over both catchments, and 10 was the global 
maximum.  Clearly, if the technique were extended to other areas of the National Park, 
new global minimum and maximum values would need to be calculated.  Obvious 
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outliers such as the large patch at TS, which is actually shadow, could be omitted at this 
stage if all of them are known.  The two scaled metrics, SC_AREA and SC_SLOPE, 
were added and multiplied by 100/2 to scale the data.  The final output range was 0 to 
61.9, which was then reclassed into 16 equal classes from 0 to 64.  The advantage over 
ERRISK2is that scaling enables values to be compared between catchments as well as 
within them, but real numbers are produced which require more storage space.  

The new Errisk2 and Errisk4 metrics and Patch_ID were exported back into TAS for 
display as two potential erosion risk maps for each catchment.  They can be displayed 
as continuous grey-scale images or reclassed into classes as required (Figure 5.5 and 
5.6).  Classes need not be equal; the digital data supplied can be sliced to identify the 
top 10 percentile if resources only allow the highest priority patches to be treated.  The 
map can be produced directly in most standard GIS packages containing a raster 
calculator.  

 

5.2 Results4

5.2.1 Comparison of erosion status between catchments 
Does the relative area of peat, mineral soil and vegetation vary between TS and UNG?  

Patch area by class type: Torside

TS all mineral
TS all peat
TS all veg

65%
2.15 km2

30%
1.01 km2

5%
0.18 km2

 

  
Patch area by class type: UNG

UNG all mineral
UNG all peat
UNG all veg

86%
0.41 

12%
0.06 

2%
0.001 km2

Km2

Km2

Patch area by class type: UNG

UNG all mineral
UNG all peat
UNG all veg

86%
0.41 

12%
0.06 

2%
0.001 km2

Km2

Km2

(b)(a) 

Figure 5.1 (a) and (b): Comparison of patch area by class at TS and UNG 
 

A higher proportion of the area at TS was exposed peat and mineral soil (Figure. 5.1(a) 
and (b); Tables 5.1(a) and (b)).  Thirty percent at TS is (was) peat compared to 12% at 
UNG.  Equivalent values for mineral soils are 5% and 2%.  However, the difference 
between catchments was not as marked as these figures suggest when the greater 
                                                 
4 The analysis is largely based on patches as classified, including misclassifications, as the 
intention was to see how well automated methods based on accessible data sources would 
perform.   
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misclassification due to shadow at TS is taken into account.  For instance, when the third 
largest patch at TS (shadowed vegetation misclassified as peat) was excluded, peat 
coverage fell from 30% to 28%.  Even so, TS was still at a more advanced stage of 
erosion in terms of exposed peat and mineral sol area.  This may be related to the 
greater frequency of wildfires at TS, at least, since 1976 (McMorrow et al., 2006), 
possibly associated with the easier access afforded by the Pennine Way, and by the 
greater cover of more flammable dwarf shrub heath and dry bog relative to UNG.  Fires 
act as triggers to vegetation removal. 

 

Table 5.1(a): Descriptive statistics for key metrics for all mineral soil, peat and vegetation 
patches at TS. 

TS all mineral Sum Mean Min Max Std Deviation Median
Area (m2) 179037 7.95 0.25 4895.50 63.27 2.25 
Shape Index)  4.35 0.44 8.00 1.11 4.33 
Max Flowlength (m)  1.52 0.00 100.55 1.74 1.00 
Max Relief (m)  0.60 0.00 43.13 0.96 0.37 
Average Slope (º)  11.05 0.00 60.95 7.88 9.11 
TS all peat 
Area (m2) 1005199 35.57 0.25 288098.00 1900.27 2.50 
Shape Index   3.84 0.31 8.00 1.19 4.00 
Max Flowlength (m)  2.02 0.00 234.57 3.99 1.21 
Max Relief (m)  0.64 0.00 223.30 2.36 0.32 
Average Slope (º)  9.72 0.00 65.99 7.80 7.48 
TS all veg 
Area (m2) 2145060 188.78 0.25 1077757.50 12240.14 3.00 
Shape Index   3.51 0.35 8.00 1.28 3.50 
Max Flowlength (m)  2.58 0.00 379.43 5.98 1.50 
Average Slope (º)  13.37 0.00 61.93 10.05 10.07 

 

Table 5.1(b): Descriptive statistics for key metrics for all mineral soil, peat and vegetation 
patches at UNG. 

UNG all mineral Sum Mean Min Max Std Deviation Median 
Area (m2) 9914 5.16 0.25 210.00 11.71 2.25
Shape Index)  4.17 1.30 8.00 1.18 4.00
Max Flowlength (m)  1.55 0.00 18.12 1.37 1.21
Max Relief (m)  0.71 0.00 8.95 0.89 0.44
Average Slope (º)  13.36 0.01 43.23 8.43 11.62
UNG all peat 
Area (m2) 59690 21.99 0.25 3995.75 140.85 3.25
Shape Index   3.48 0.80 8.00 1.23 3.50
Max Flowlength (m)  2.47 0.00 34.00 3.21 1.50
Average Slope (º)  9.65 0.00 40.40 6.27 8.42
UNG all veg 
Area (m2) 414357 835.40 1.25 409141.00 18370.58 2.25
Shape Index   3.52 0.30 6.70 1.13 3.50
Max Flowlength (m)  2.54 0.00 268.99 12.24 1.21
Average Slope (º)  13.21 0.65 40.27 6.71 12.21
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Do proportions of connected patches of all types vary between UNG and TS?  

It is not simply the area of exposed peat which is important.  Connected peat patches 
present a greater erosion risk.  The majority of connected patches in both catchments 
were vegetation, but a higher proportion were peat at TS than at UNG; 28% compared to 
11% (Figure 5.2 (a) and (b); Table 5.2 (a) and (b).  Even allowing for the 71103 m2 
misclassified patch, over a quarter of the TS catchment (26%) was at high risk.  It should 
be stressed that this represents the situation pre-restoration, since re-seeded peat and 
geojute have been recoded to peat.   

 

Connected patch area by class type, Torside

TS all connected mineral
TS all connected peat
TS all connected veg

69%
2.06 km2

28%
0.85 km2

3%
0.09 km2

 

Connected patch area by class type, UNG

UNG all connected mineral

UNG all connected peat

UNG all connected veg

88%
0.41 km2

11%
0.05 
km2

1%
0.01 km2

 
Figure 5.2 (a) and (b): Comparison of patch area by class at TS and UNG for connected 

patches only 

 

Table 5.2(a): Descriptive statistics for key metrics of connected patches of mineral soil, 
peat and vegetation at TS 

TS connected 
mineral Sum Mean Min Max Std Deviation Median
Area (m2) 88888 19.97 0.25 4895.50 137.64 3.00
shape Index (P/A)  4.01 0.44 8.00 1.15 4.00
Max Flowlength (m)  2.24 0.00 100.55 3.03 1.50
Average Slope (º)  9.86 0.12 51.42 6.13 8.78

TS connected peat 
Area (m2) 853623 233.49 0.25 288098.00 5279.34 4.50
Shape Index  3.43 0.31 8.00 1.39 3.43
Max Flowlength (m)  4.17 0.00 234.57 9.67 1.71
Average Slope (º)  10.56 0.50 49.96 6.73 9.39
TS connected veg   
Area (m2) 2061445 730.23 0.25 1077757.50 24552.30 4.75

(b)(a) 
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Shape Index  3.13 0.35 8.00 1.31 3.11
Max Flowlength (m)  4.36 0.00 379.43 11.15 2.00
Average Slope (º)  11.52 0.00 61.81 7.90 9.65
TS all connected 
Area (m2) 3003956 274.84 0.25 1077757.50 12847.71 3.75
Shape Index  3.59 0.31 8.00 1.33 3.60
Max Flowlength (m)  3.43 0.00 379.43 8.25 1.71
Average Slope (º)  10.52 0.00 61.81 6.86 9.24

 

Table 5.2(b): Descriptive statistics for key metrics of connected patches of mineral soil, 
peat and vegetation at UNG 
UNG connected 
mineral Sum Mean Min Max Std Deviation Median
Area (m2) 5333 7.23 0.25 210.00 16.37 2.75
Shape Index (P/A)  4.02 1.30 8.00 1.19 4.00
Max Flowlength (m)  1.87 0.00 18.12 1.69 1.50
Average Slope (º)  12.84 0.01 42.58 7.72 11.11
UNG connected peat 
Area (m2) 50587 56.59 0.25 3995.75 241.42 8.25
Shape Index  2.90 0.80 8.00 1.24 2.70
Max Flowlength (m)  4.21 0.00 34.00 4.70 2.71
Average Slope (º)  11.12 0.00 40.40 6.22 9.99
UNG connected veg 
Area (m2) 413628 1504.10 1.25 409141.00 24671.25 3.25
Shape Index  3.26 0.30 6.40 1.17 3.30
Max Flowlength (m)  3.49 0.00 268.99 16.36 1.50
Average Slope (º)  12.72 0.71 40.27 6.00 11.81
UNG all connected 
Area (m2) 469548 246.22 0.25 409141.00 9369.90 4.50
Shape Index  3.38 0.30 8.00 1.32 3.30
Max Flowlength (m)  3.20 0.00 268.99 7.15 1.71
Average Slope (º)  12.02 0.00 42.58 6.86 10.69

 

To summarise, UNG was a more vegetated, lower risk catchment.  The fact that over a 
third (35%) of the TS catchment was unvegetated compared to 14% at UNG suggests 
that erosion at TS is at more advanced stage than at UNG.  Over a quarter (28%) of the 
connected patches were peat, compared to only 11% at UNG, so potential erosion risk 
was greater at TS.   
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5.2.2 Within-catchment variation in erosion status 
Do proportions of peat, mineral soil and vegetation vary within TS, and within UNG?  

The same 6:1 ratio of peat to mineral soil area is (was) found at both catchments (Figure 
5.1 (a) and (b); Table 5.1 (a) and (b).   

Do proportions of connected to unconnected peat vary within TS, and within UNG? 

If the area of connected and unconnected peat patches is compared, the same 
proportion was found for TS and UNG (85%) (Figure. 5.3(a); Table 5.3).  The fact that 
majority of peat area was connected to the channel represented high potential erosion 
risk at both.   

In terms of the number of peat patches, unconnected patches were more dominant than 
connected ones at TS (87; 13%) than they were at UNG (67:33%) (Figure 5.3(b); Table 
5.3). 

Both observations would seem to suggest that erosion risk in the two catchments is 
equal.  However, it is the connected patches which are critical, and their relative and 
absolute area were greater at TS (section 5.2.1) as is also obvious from the larger area 
of red on Figures 4.4 compared to Figure 4.5.  Relative sizes and other characteristics of 
individual patches will be explored next. 
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Figure 5.3: (a) Comparison of connected and unconnected peat patches at TS and UNG 
by area, (b) Comparison of connected and unconnected peat patches at TS and UNG by 

number. 

 47



McMorrow, Lindsay and Liddaman, 2006, Mapping and Encoding the Spatial Pattern of Peat Erosion  
_____________________________________________________________________________ 

Table 5.3: Area and number of connected and unconnected peat at TS and UNG. 

 TS UNG 
Area of connected peat (m2)  853623  [85%] 50587  [85%] 
Area of unconnected peat (m2)  151577  [15%] 9103  [15%] 
No. of connected peat patches  3656  [13%] 894  [33%] 
No. of unconnected peat patches  24606  [87%] 1820  [67%] 

 

5.2.3 Characteristics of connected peat patches 
Do metrics for connected peat vary significantly between UNG and TS?   

Parameters for the four metrics discussed below are given in Tables 5.2(a) and (b).  The 
t-test showed that mean patch size at TS (233 m2) was significantly larger than at UNG 
(57 m2) (p 0.044).  However, both TS and UNG had very skewed distributions with a few 
very large patches, so the median is a better comparative measure, and TS patch 
median was, in fact, half that of UNG (4.5, 8.25 m2).   

Connected peat patches at TS were significantly less compact than UNG, and had 
shorter but more variable flow lengths.  They were also flatter (p 0.012) with modal value 
8 degrees at TS and 10 degrees at UNG, and both average slope distributions were 
positively skewed. 

However, ANOVA showed that there was significantly more variation between 
catchments than within them only for two metrics: shape and average slope (p 0.000, 
0.025).   

Is there greater variation in key metrics of peat patches between unconnected and 
connected patches (for both catchments combined) than within these two groups?  

Connected peat patches were larger but more variable in size, more compact, longer but 
more variable in flow length, and flatter but with more variable relief. (Table 5.4).  
ANOVA showed that there was significantly more variation between the two connectivity 
classes than with them for all four metrics (p 0.000) (Table 5.5).   
 

Table 5.4: Descriptive statistics for all unconnected peat patches (TS and 
UNG) compared to all unconnected peat patches. 

Total unconnected peat       N = 26426 
 Mean Std. Deviation Minimum Maximum Median 

Area (m2) 6.08 25.01 0.25 1737.00 2.25 
Shape Index (P/A) 3.89 1.14 0.51 8.00 4.00 

Max Flowlength (m) 1.69 1.87 0.00 62.37 1.21 
Average Slope(º) 9.55 7.84 0.00 65.99 7.28 

Total connected peat           N = 4550 
Area (m2) 198.73 4733.95 0.25 288098.00 5.00 

Shape Index 
(P/A) 3.33 1.38 0.31 8.00 3.27 

Max Flowlength 4.17 8.92 0.00 234.57 2.00 
Average Slope 10.67 6.64 0.00 49.96 9.51 
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Table 5.5: ANOVA for total connected versus total unconnected peat. 

 Sum of Squares df Mean Square F Sig.
Between Groups 144059525 1 144059524.69 43.76 0.000
Within Groups 101960981630 30974 3291824.81   

Area (m2) 

Total 102105041154 30975    
Between Groups 1234 1 1234.09 883.66 0.000
Within Groups 43257 30974 1.40   

Shape Index 
(P/A) 

Total 44491 30975    
Between Groups 23950 1 23950.49 1634.26 0.000
Within Groups 453933 30974 14.66   

Max Flowlength 
(m) 

Total 477883 30975    
Between Groups 4871 1 4871.24 82.75 0.000
Within Groups 1823272 30974 58.86   

Average Slope 

Total 1828143 30975    
 

Further analysis could focus on which metrics best discriminate between connected and 
unconnected peat patches.  Discriminant function analysis can be used to identify which 
metrics best discriminate between connected and unconnected patches.  Work so far 
suggests that maximum flow is an important discriminator, as might be expected for 
connected patches.  Similarly, factor analysis can be used to derive a new combined 
metric for connected peat patches, based on a weighted combination of the original 
metrics.   

Cluster analysis can be carried out on connected peat patches for each catchment. 
Patches are grouped by the similarity of their metrics, or factors from factor analysis, and 
then mapped to see if the clusters have a particular spatial distribution.  For instance, 
are some clusters restricted to certain aspects or peat depths? 

5.2.4 Analysis of connectivity maps 
How does connectivity vary within between and within TS and UNG? 

The connectivity maps produced in section 4 (Figures 4.4 and 4.5), confirm the statistical 
results.  A greater degree of slope-channel coupling in exposed peat is seen at TS (prior 
to reseeding) than at UNG.  The large horizontal Y-shaped peat flat on Sykes Moor, 
smaller flats at Torside Grain and much of Joseph’s Patch emerge as connected peat 
patches and justify the restoration work that has already been carried out (Figure 5.4). 
Shining Clough stands out as a priority for reseeding, as almost all the peat in this area 
is connected to channels  

Advanced Bower type 1 stage of erosion (Bower, 1960, 1961) is seen at Bleaklow Head 
where a large patch of connected mineral soil surrounds connected peat.  Some 
misclassification is obvious, especially in Joseph’s Patch, where recently burns have 
been misclassified as mineral soil.  The Pennine Way north of Bleaklow Head is 
correctly classified as connected mineral soil (yellow), because the path is also identified 
from the DEM as a channel.  Indeed, overlaying the wayline data on the channel network 
or connectivity map would show how much connectivity is due to the path network 
doubling as channels.  

At UNG, the connectivity map (Figure. 4.5) shows that a north-south strip to the east of 
the centre is the most degraded pat of the catchment, as evidenced by amount of 
mineral soil and peat exposed.  It is also the highest risk area because most of the 
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connected peat is found here.  Elsewhere the patches are much more linear than TS, 
occurring along gullies (Bower type 2).  There are few extensive connected peat flats, 
perhaps because fewer wildfires have occurred here in the last 30 years.  

 

 
Figure 5.4: Extract from Figure 4.4 connectivity map for the SE part of the TS catchment, 
showing pre-restoration situation. Reseeded areas are overlaid as white polygons.  Red 

areas are most at risk.  Shining Clough emerges as a priority for reseeding. 
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5.2.5 Analysis of erosion risk maps 
How does erosion risk vary within catchments? 

 
Figure 5.5: ERRISK2 for TS with 1 km grid.  Reseeded areas shown as white polygons. 

 
Figure 5.6: ERRISK2 for UNG with 100m grid. 
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Red and magenta tones on the ERRISK2 maps (Figures 5.5 and 5.6) show the largest, 
steep connected peat patches.  Most of these are already being treated at TS.  The red 
patch on TS Clough is shadow not peat.  At UNG, the high risk patches are much more 
linear and associated with gullies, so gully blocking may be a better option than 
reseeding.  

How does erosion risk vary between catchments? 

It is only valid to compare catchments using ERISK4.  Unexpectedly, the means was 
actually higher for UNG (11.1 compared to 10.6).  However, the distributions are 
positively skewed, affected by the few large patches.  When the modes are compared 
TS is higher (Figures. 5.7(a) and (b)).  Greater overall risk is suggested at TS when 
Figures 5.8 and 5.9 are compared.  
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Figure 5.7: Histograms of ERRISK4 for (a) TS and (b) UNG. 

 

 
Figure 5.8: TS potential erosion risk (ERRISK4), 16 equal classes 
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Figure 5.9: UNG potential erosion risk (ERRISK4), 16 classes 

 

5.3 Discussion and recommendations 
5.3.1 Extracted metrics 
Significant differences emerged between the landscape compositions of the two 
catchments. TS was the more degraded, with a larger relative and absolute area of 
exposed peat and mineral soil patches than UNG.  It also had a larger area of connected 
peat patches, so that connectivity of critical patches and potential erosion risk was 
greater for TS.  Restoration measures have already been concentrated here.   

Means and distributions were skewed by a few large misclassified patches, which need 
to be screened out.  However, there is genuine tail of a few very large patches with 
many more smaller ones, especially at TS.  The largest are the peat flats at here created 
by fire.   
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The significant differences found in the metrics between connected and unconnected 
peat patches, suggest that it may be possible to recognise connectivity from their larger 
size, more compact shape, longer flow length and less steep slope, but would need to 
be tested with a larger sample of catchments.   

5.3.2 Connectivity and erosion risk maps 
The connectivity map is a useful guide to pinpoint priority areas for reseeding.  In 
contrast, the trial erosion risk maps are not much less as useful products, partly because 
they use area and at least one large patch is misclassified. 

The risk maps should be regarded as an example of what can be produced from the 
database.  Other risk maps could readily be produced from the database supplied, either 
using SPSS, Excel, or directly in a GIS such as TAS or MapInfo.  More appropriate 
metrics can be chosen to express the relative degree of risk for connected peat patches, 
for instance, flow length or shape, and combined in other ways (multiplication, ratios, 
etc).  Practical considerations can also be built in.  For instance, patch shape could be 
incorporated, as a single large compact shape may be easier to locate for helicopter 
reseeding than several connected linear ones. 

Many different styles of maps can be produced from the same digital risk image.  For 
instance, it can be sliced equally to represent 3, 5 or more classes, or just the top 10% 
highest risk classes could be displayed.  

The connectivity and erosion maps presented here, and others maps which may be 
produced from the database, could be used to guide restoration work.  However, there 
are three important caveats. 

(i) The first relates to the assumptions underlying the model.  The assumption that 
connected peat patches at TS and UNG have the highest erosion risk should ideally 
be tested against field data.  Calibration against field data on sediment delivery from 
patches would provide a way of validating alternative erosion risk models.  It would 
also allow testing of sensitivity to the various factors affecting the quality of the 
inputs, i.e. the thematic and geometric classification accuracy of the patch map; and, 
similarly, the accuracy and geometry of the channel network and topographic 
metrics.  The other two caveats relate to the quality of these inputs. 

(ii) The risk maps and underlying database require error checking for misclassified 
patches.  Causes of misclassification identified in section 3 include time of day or 
year (low sun angle creating shadow); time of year (vegetation phenology reducing 
contrast with mineral soil and peat).  Most notably, a very large patch of ‘peat’ at 
Torside is actually shadow (orange tones on Figure 5.8).  Other misclassifications 
have occurred, for instance, burnt peat is confused with heather, and some reseeded 
and brash-covered peat with vegetation.  Some types of error, such as peat 
protected by geojute classified as mineral soil, have been reduced using context 
measures, but others remain.  Erroneous connected peat patches, especially those 
due to shadow, need to be screened out using visual interpretation of the aerial 
photographs and field knowledge.  Ultimately, the identification of peat by 
multispectral classification is ultimately dependent on the quality of the image data.  
Images that use the shortwave infrared art of the spectrum or hyperspectral sensors 
with narrow bands are likely to improve thematic accuracy.  

(iii) Connectivity of some patches may not be accurately represented.  Connectivity is 
extremely dependent on the quality of the channel network used to determine 
connectivity, in particular the ability to accurately represent network extent.  
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Traditional methods for extracting channel networks from DEMs do not work well in 
peatland environments.  Instead, a more appropriate morphologically based method, 
which identifies areas of low topographic position, has been advocated in this work.  
However, connectivity is only as good as the fit between the patch map and the 
channel network and the issue of geometric error of the patch map remains.  So too 
does the accuracy of the DEM.  Slope and other topographic metrics are only as 
good as the locational and heighting accuracy of the elevation data.  Accuracy would 
improve if the 0.5 m photogrammetric DEM extracted by UKP were used.  

 
Suggestions of further work to improve inputs is identified in section 6.3.  
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6. CONCLUSION 
 
6.1 Summary of recommendations 

1 The LiDAR had good geometric accuracy, but an independent dGPS survey of 
ground control points should be obtained, against which geometric quality of the 
LiDAR DEM and aerial photographs can be judged. 

2 The UKP-CIR aerial photography had the best thematic and geometric accuracy 
of the three AP data sets so is the data source recommended for encoding 
erosion pattern.   

3 Its lower spatial resolution (0.5 m) relative to 0.25 m for GM and UKP meant that 
small patches in gully floors were not detected.  Despite this, a finer resolution is 
not recommended, as 0.5 m produced too many patches to handle without 
sieving.  Furthermore, the added cost of being able to see finer detail cannot be 
justified if it means using true colour instead of CIR, or not having photos 
orthorectified.  Both thematic and geometric accuracy are vital for erosion risk 
mapping and for monitoring revegetation.   

4 If new aerial photography is flown, it should ideally be: CIR; obtained in summer 
to maximise spectral contrasts and as close as possible to solar noon to 
minimise shadow; ortho-rectified to improve fit to LiDAR for connectivity analysis; 
and not finer than 0.5m spatial resolution unless for small areas (<1 km2). 

5 The pattern analysis method used here requires hard classification, that is, a 
pixel is forced into a single class.  For this purpose, maximum likelihood 
supervised classification is recommended, but only on unstretched and 
uncompressed data.  Representative spectral signatures developed for one 
catchment can be applied to others with minor adaptations.   

6 As natural and managed revegetation progresses, it will become less appropriate 
to use hard classification methods. Soft classification methods, such as spectral 
unmixing, which calculate the probability of membership to peat and vegetation 
classes, will need to be explored.   

7 The size of the image extracts to be classified and encoded should be chosen 
according to computer specification; for instance, ideally not larger than 0.5 km2.  
The outlet points of the catchments used here were gauging stations.  In 
retrospect, the Torside catchment (3.31 km2) was too big to process easily at 
0.5m resolution and with three bands, resulting in classified images of 21.8 Mb 
per image (allowing for a minimum number of mask pixels outside the catchment 
boundary).  UNG (0.38 km2) was much more manageable at 2.3 Mb.  It is 
recommended that Torside should be divided into sub-catchments or isobasins 
(Lindsay et al., 2006, section 4.2) to speed up processing.  This would also 
enable parts of a catchment to be compared and within-catchment spatial 
variation studied. 
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6.2 Extent to which objectives were fulfilled 
The project has been reasonably successful within the limitations of the data.   

• Quality of the data sets has been evaluated and recommendations made 
(objective 1).   

• Six sets of peat, mineral soil and vegetation class maps were produced and 
evaluated (objective 2)  The most appropriate combination of dataset and 
multispectral classification method was identified, but accuracy was limited by the 
data sources available (objective 3).   

• A database of morphological and topographic metrics has been successfully 
extracted for two catchments (see attached CD) (objective 4).   

• This required a new method to be developed for extracting a suitable channel 
network from the DEM (provided on the CD), and development of an automated 
method for extracting metrics.  Connectivity metrics were extracted by combining 
the channel network with a patch map produced from classification (objective 5).   

• Basic spatial variations in patch metrics within and between were statistically 
analysed, although more could be done (objective 6). 

• Objective 7 had mixed success.  The connectivity map is a useful tool and could 
be used in conjunction with other digital map data in the MFF database to assist 
in planning restoration works, with the caveats identified in section 5.3.2.  The 
erosion risk maps were less successful, but there is scope to develop more 
appropriate models from the data supplied.   

• Recommendations for further work are made below (objective 8).  

 

6.3 Further work 
6.3.1 Testing connectivity and erosion risk maps 
The relationship between mapped potential erosion risk and actual measured erosion 
should be assessed.  This could be achieved by using the connectivity map or perhaps, 
better erosion risk maps, to locate sampling sites for field monitoring of slope-channel 
sediment supply and POC in streamflow.  Sites could be chosen to represent the range 
of postulated risk for connected peat patches with paired control sites on unconnected 
patches.  Different models (combinations of metrics) could be tested against the field 
data. 

6.4.2 Sensitivity analysis 
Sensitivity of the connectivity and erosion risk maps to factors affecting their inputs 
should be investigated (patch map, channel network and DEM).  Pertinent factors for the 
patch map include alternative image sources (such CASI, SPECIM and other airborne 
scanners), use of topographic and other collateral data and alternative classification 
methods (Figure 2.4).  Sensitivity to factors such as sieve threshold could also be 
explored.   

Similarly, sensitivity to factors affecting the connectivity and topographic metrics should 
be investigated.  These include DEM resolution (Cho and Lee, 2001) and method of 
extracting the channel network (Lindsay, 2006; Heine et al. 2004).  One would expect 
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the photogrammetric DEM supplied with the UKP-CIR photos to produce more reliable 
results, but data volume would be very large.   

6.4.3 Further pattern analysis 
More complex pattern analysis to assist gully-blocking could be undertaken if thematic 
and geometric classification accuracy can first be improved; for instance, to answer the 
question ‘Which gullies are most eroded?’  This would involve analysis of connected 
mineral patches from the connectivity map which were also linear (large shape index) 
and adjacent to linear patches of peat (indicating deep incision of gullies at quite 
advanced stages of erosion).  The TAS flow-tracing algorithm could first be used to 
merge individual pixels and lines of pixels along channels, prior to sieving and clumping.  
The map could be combined with gully depth maps produced from the DEM (Lindsay & 
Evans, 2006) and existing methods (Haycock, 2004) to refine locations for gully-
blocking.   

A similar method might be used to identify gully floors which are re-vegetating naturally 
or after gully blocking, and associated with reduced sediment yield (Evans and 
Warburton, 2005).  It should be noted that only mineral-floored and vegetated gullies 
wider than 1.5 to 2 m are likely to be identified with 0.5m resolution CIR photography.  
Increasing spatial resolution to 0.25 m would allow mineral soil or vegetation pixels on 
gully floors to be more easily detected, but there would be a four-fold increase in data 
volume.  Unless, small areas were being analysed, there would be too many patches to 
handle and cost would increase.   

6.4.4 Overview 
In summary, further research on mapping and encoding erosion pattern should be 
directed at:  

(i) improving the accuracy of connectivity using the finer resolution DEM 
supplied with the UKP-CIR photographs;  

(ii) improving the accuracy of the simple three-class of peat, mineral soil, 
vegetation map using remotely sensed data at longer wavelengths and with 
narrow bands, and ore advanced classification methods; 

(iii) quantifying the error for each peat patch.   

Beyond pattern, the alternative techniques and data sources suggested should be 
evaluated for their ability to extract information for monitoring revegetation on treated 
areas. 
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